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Foreword

y This collection of notes is a b;=product of psychological

- investigations. The purpose of these studles was to assess
human performance in information processing. In particular,
it has been attempted to measure human capabilities of ac-

; quiring and transmitting information. Measurements were ob-

tained in terms of the Shannon-Wiener Measure of Information,

and the related Measure of Transmission Rate. This implies

categorization of all stimull and responses, and estimation

of the probabilities of occurrences for all possible associ-

ation§ of stimull and responses. In many engineering applica-

- tions, the number of categories is low; in psychological ex-
periments, it tends to be high, For lnstance, in a letter-
recognition experiment, there are 26 possible inputs and out-
puts, and 676 stimulus-response pairs. Purthermore, the proba-
bility of a given answer to a given stimulus depends also on
preceding and simultaneocus (neighboring) other stimuli and
responsesy thus, the number of distinguishable categories be-
comes very large, In order to assocliate a probability measure

with every single category, a large sample is needed; the

greater the precision required, the larger the sample. This
can lead to an inordinate amount of labor in data taking and

computing., Moreover, it seems that one cannot reach arbitrarily

high precision by extending the observation to great length;

it 1s likely that during a long series of trials, and partly
as a consequence of such trials, the underlying probabilities

remain not constant. Thus, 1t is more than a convenience to _ o .{




5. e 4
et
v

ar - emom

11

replace the exaet computation with approximating shortecuis,
based on samples of moderate slze,
In this laboratory, in dealing with specific aspects of

these problems which arose from experimental studles; we have

tried to obtain solutions of slightly greater generality than

needed in the particular instances The result are a number
of techniques which have worked in some cases, and may be 8xe
pected to be useful in others; they are presented in this

report.

Henry Quastler
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Incompletely Known Situations 1

INFORMATION MEASURES IN INCOMPLETELY KNOWN SITUATIONS

Henry Quastler

The estimation of information (or uncertainty, specifi-
city, entropy), H, involves the following three operations:
(1) the classification of all relevant occurrences. (2) the
estimation of the probability associated with each class, and
(3) the cbmputation of an information function based on these
estimates. In the 1deal case, if 1t is known that there are
exactly r classes, and that the probabilities are p(1) (where
i=1,2.. .03 § p(i) = 1); then, the uncertainty, H, is
defined by the well=known equation

H==-2 p(1) log p(1).

In most actual situations, it 1s impossible to know all the
alternativas or to assess accurately the probabilities associ-
ated with every single one. This could seriously impair the
practical value of information measures; it is the purpose of
this note to show that it does not. It will be demonstrated
that a rough estimate of H 1s possible as socn as the major
alternatives and their approximate probabllities are known,
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2 Incompletely Known Situations

The measure of specificity is a sum of terms "p log %".
This function rises steeply up to p = .10, which accounts for
the information measure being not very sensitive to rare alter-
natives; and, it has a flat top for values of.p between 0,20
and 0,60, which accounts for the small effect of moderate
fluctuations in probebility., (Fig. 1)

a - Small Effect of Rare Occurrences
' The following examples will i1llustrate that the measure
of specificity is not sensitive to rare alternatives, To be-
gin with a hypothetical case: Suppose nine alternatives are
known to account for 90% of all occurrences; if they are equi-
probable, then their contribution to the measure of specificity
is 9 x f% log, 10 = 2,99, We now fill th2 remaining 10% with
& varying number of equiprobable alte-natives; the results are
tabulated below:

TABLE I:

Effect on Uncertainty of Minor Alternatives (adding up to 10%
of all occurrences),

No. of Proba=- Aggre- Total H if No, of equie-
Minor bility gate 90% of oc= probable al-
Alter- of Contri- currences ternatives
natives each bution made up by giving same
respons- to H 9 equipro- total H
ible for bable alter-
residual natives
10%
(Pig. 2a) 1 | 1/10 .33 3.32 10
(* 2v)io | 1/100 .66 3.65 13
100 | 1/1000 1.00 3.99 16
10,000 | 1/100,000 1.66 .65 25
1,000,000 | 1/10,000,000f 2.33 .31 1

In this situation, 1if one underestimates the number of minor

alternatives by a factor of 100, the resulting error in H 1is
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Incompletely Known Situations 3

only about one~sixth, If only 5% of all occurrences are to
be filled by unknown minor alternatives, their contribution
is even less conspicuous:
TABLE II:
Contributions to Total Uncertainty by Minor Alternatives
(adding up to 5% of all occurrences)

No. of minor
alternatives Probability of each Contribution to H

1 g/loo .22
10 /1000 .38
1000 5/10,000 .55
10, 000 1,000,000 .88
1,000,000 /1,000,000, 000 1.21

The difference between the extreme values in this table can

be made intuitively clear by expressing uncertainties in terms
of equivalent number of equiprobable alternatives (as shown
in the table I). Suppose that this number is known for a
single alternative accounting for 5% of the occurrences, the
other 95% being distributed in any arbitrary fashion; then,

if the single alternative 1s replaced by one mlillion equi-
probable ones, without otherwise changing the distribution,
the equivalent number of equiprobable alternatives is just
doubled.

An investigation by A. A. Blank furnished an Impressive
real example, He calculated the specificity of single English
words; for particular reasons, the sample was restricted to
§-letter words. Ths uncertainty was obtained as

A V.
H= 7: 110 X =
il B (N '21 y,)
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4 Incompletely Known Situations

where‘Q1 is the observed frequency of the 1'th L-letter word
in the Thorndyke 1list. He also determined the values of H
obtained by successive elimination of the less frequent
words, The results are shown in table III:

TABLE III:
Measure of Uncertainty for L-letter words (data of A, A, Blank)

no., of words % of all words H 33
All lj-letter words
in Thorndyke's 1list | 1550 100,0 8,13 | 100
Only words with
frequency > 150 865 55.8 7.98 98,1
Only words with
frequency > 7501 395 25,5 747 91.8
Only words with
frequency = 1550 | 214 13.8 6,89 8L.8
Only words with
frequency > 3150 119 Te7 o634 | 77.8

Thus, taking into consideration only 1/10 of all categories
(which probably accougt for mere than 1/2 of all occurrences)
yields already about lj/5 of the final measure of specificity.
The examples given show that the information function is
not sensitive to rare occurrences - which means that it should
not be used whenever infreguent occurrences must be heavily
weighed; on the other hand, it can be used successfully in

situations which are not completely known,

b ~ Small Effect of Small Variations in Probability
Any operation which tends to average probabilities in-

creases the uncertainty; therefore, if r alternatives have

an aggregate probability P then thelr contribution to the
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Incompletely Known Situations 5

measure of uncertainty 1s greatest if they have all equal pro-

babilities (P/r). We will now demonstrate that moderate de-
viations from equiprobability do not markedly affect the un-
certainty.

Consider the simplest case of P =1 and p = 2., If the
two probabilities are equal, then H = 1l; 1f thelr ratio is
l:2, H = 0.92; 1if the ratio is 1:3, a very considerable de-
viation from equality, H is still 0.81.

For larger values of r, the insensitivity of H against

probability distortion is still more pronounced. For instance,

we may replace the 9 equiprobable major alternatives in our

first example (table I) by sets of 9 aliernatives with pro-

babilities staggered aritimetically (fig. 3a) or geometrically

(fig. 3b), stipulating only that the span between the extreme

values should be within one order of magnitude. The resulting

changes in H are quite small,

We come to the following conclusion: I1f a situation 1s
analyzed to the degree that we feel we can classify 90-95%
of all occurrences; and if the probabliities msscciated with
each class are spproximately known; then we are entitlel bo

make a roggh estimate of the information measure,
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Fig.2 Small effect of adding minor alternatives
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Fig. 3 Small effect of varying probabilities
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Equivocation 1

EQUIVOCATION AS THE SUM OF ERROR-LOCATING
AND ERROR-CORRECTING INFORMATION

0 H. Quastler

The estimation of information transmission is based on
the estimation of probabilities for all possible input-output
Lo pairs. There are many cases, in particular those where human
\ performances are to be assessed, where there is a host of in-
put-output categories, more than one could ever hope to fill
adequately by means of the usual experimental sampling proce-
dures, and more than would tax the resources of a samall battery
of computers. For that reason, 1t 1s useful to have bounds
for information transmission and equivocation. 1In case of

doubt, the bound should be on the conservative side (which

A AN A S S
. .

means a lower bound for transmission, an upper bound for equil-

vocation). Ideally, an efficient bound is sought. This means

4

X

) that if one does make sultable allowance for all possible cone
tingencies in the input-output table, the bound should be

i equal '~ the value sought. Such a bound for the equivocation

can bu constructed as follows: we imagine an auxillary source

(an "ideal observer" ) which, knowing both input and output,

furnishes such information as is needed to reconstruct the ine
pu@ from the output. We will show that if most efficlent code
ing 1s used, the amount of information produced by the <« . .. -
'555 . lary source bscomss sgual tc the equlvocatlon.

. Let H(in), H(out), and H(aux) denote the uncertainties.
(per unit act) of input, output, and auxiliary source, re-

spectively. Subscripted symbols denote conditional uncer-




2 Equivocation

tainties. Then (Shannon, p. 37),
Hout,aux(in) > Hout(in) - H(aux)

If it 1s possible to reconstruct the input completely from
the output and the auxiliary message, then Hout,aux(in) van-
ishes and

H(aux) > Hj,(in)

which gives the upper bound desired. It has been shown (Shan-
nont!s theorem 10, p. 37) that it is possible to approximate
Hyyg(in) by H(aux) as closely as it is desired by means of ef=-
ficient coding. More precisely, it 1s possible to correct all
but an arbitrarily small amount e of the errors in the output
with a channel of capacity Hy,.(in). For such an efficient

code we have necessarily

Hout(in) 2 H(aux) 2 Hout(in) -t

It follows that the uncertainty of a fully-correcting suxile-
iary source is an efficient bound as desired.
Shannonts theorem states what could be ideally obtained
with perfect codiﬁg; it does not say how such a code is to be
constructed. In the situation we are considering, the auxil-
| iary source would have to be designed with perfect knowledge
of the properties of the inmput and of the channel. But, it
is precisely such imowledge which we try to establish by ex-
perimental tests; hence, we cannot establish an optimum be-

havoir for the ideal observer, What we can actually do is the
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Bquivocation 3

following: we begin by designing an auxiliary source which
will make the equivocation vanish., The information furnished
by this source is necessarily an upper bound of the amount of
equivocation. Subsequently, we use any lknowledge we may have
about regularities in the occurrence of errors to reduce the
amount of information required from the auxiliary source.

This can be done in successlve steps. In addition, we can

try to name lower bounds for the amount of information required
from the auxiliary source; this, if successful, will bracket
the true value of the equivocation.

It is sometimes convenlient to partition the auxiliary
source into two sources, one which furnishes data needed to
locate errors, and one which serves to correct srrors after
they are located, Accordingly, the amount of equivocation is
partitioned into error-locating information of amount H(loec),

and error-correcting information of amount H(cor):

Hbut(in) = H(loc) + H(cor)

The amount of information needed for error location de-
pends on the pattern of making errors. If this is a lawful
and known pattern, then no error-locating information is needed.
Suppose, for instance, that 8 makes a mistake exactly every
jth time; then to know the location of all errors one has to
know only the location of any one false transmission (a negli-
gible amount of Information compared to the total informstion
in a long message). Or, if it 1s known thet S 1s always




4 EBquivocation

wrong when his outputs are, say, of the kind "M," "p," opr "z,
then no extra information will be needed to disregard these
parts of his report. If, on the other hand, the commission
of an error is a random event, then some information is needed
to locate it. Suppose, now, that the total ensemble of errors
committed includes errors which are quite lawful and predic-
table (provided the laws are known) and others which are ran-
dom events. As only the latter need any error-locating infor-
mation, 1t follows that the larger the fracticn of random er=-
rors, the greater the amount needed for error location.

Ify, on the basis of prior knowledge of the S's behavior,
one can extract from the output itself any indications con-
cerning error location, then these indications can and should
be used in constructing the error locating code. If it is
known that all outputs are equally liable to be erroneous, then
the amount of the error locating information is maximum,
Therefore, if one does not know how errors are distributed in
the output, he may assume them to be equiprobable and thus obe
tain an upper bound of the amount of information needed to
supplement the St's report in order to locate the errors it
contains, Deviations from equal distribution of errors have
to be quite pronounced before they reduce the value of the
supplementary information much below the maximum,

The following example is taken from experiments performed
in this laboratory (Quastler and Wulff). 8s had the task of
copying sequences of random letters on the typewriter., In a

particular sample of 10,260 letters, we found 3.4% errors.




i Equivocation 5

In first approximation, we assume that errors occur completely

randomly; with this model, we get:

H(loc) = - 0,034 log, 0,034 - 0,966 log, 0.966 = 0.214 bits/
’ letters

However, 1t was quite obvious that clusters of errors
ococurred more frequently than could be expected by chance
l grouping. Thus, in one particular sample of 10,260 letters
we found:
; single errors.. ... 158 times, or 1.54%
pairs « « « « o o o 42 O " o0,41%
triplets « ¢« « o+ o o 22 " " 0.21%

quadruplets « « ¢ o 9 " v 0,094
quintuplets ¢ « ¢ « 1 " " 0,01%

Thus, while the over-all probability of any key being
wrong was 3.4%, the probability of a wrong key following &

wrong key was 33.5%, or almost ten times as large, Accord-
ingly, we introduce a second approximation, and treat the

error-generating mechanism as a Markov process, with the pro-

bability of an error occurrence depending on (and only on)

the success or fallure of the preceding act. The Markov pro-
cess is characterized by the probabllities;

L1}

0,977
0.023
- Prob {success following error } = 0.665

Prob {success fellowing succesak

P}
Prob {orror following success }

Prob {error following error } = 0.335

ol woese o




6 Equivocation

From these probabilities follows:

H (loc) = = 0.034x(0.335 logy 0.335 + 0.665 logy 0.665) -

0.966 x (0,023 logy 0.023 + 0.977 log, 0.977) = 0.185 Ei;S/
Thus, this approximation reduces the error-location uncertain-
ty by about one-sixth. Additional refinements are suggested
by the data, but will not result in any significant reduction
of uncertainty; e.g., iIntroduction of error probabilitlies con-
ditional upon the two preceding acts, gives a value Hy(loc)
which is 0,185 bits/key, thus, not smaller than the value for
Hy (loc).

The amount of information needed to correct errors depends
equally on the error patﬁern. A given output, even if lknown
to be erroneous, might still asuggest a limited range of pos-
sible inputs., For instance, in playing plano, an error is
likely to be not very far from the target key. We have used
this consideration to bracket Hout(in) between values obtained
by assuming error ranges which are certainly too large and too.
small, respectively. If no regularities in the error pattern
are known, then all one knows about the input is that 1t is
not the output; in the speclal case, frequently occurring in
the laboratory, where one has k equiprobable input categories,
and each input is equally likely to produce a faulty output,
we have )

H(cor) = g logy (k-1)

In the binary case, H(cor) vanishes.




Equivocation 7

The method here discussed 1s useful in two ways. Plrst,

it establishes the relations between error rate, error pattern,

and information transmission in a fashion which is lucid and

— ey

easy to survey; thus, we found it convenient to use for a first

computation of T in situations not previously dealt with, Se-
cond, the method enables one to perform an estimation of T in
successive steps} it establishes upper bounds for the equivo-
cation which together with the lower bound (zero) define an
interval within which T must lie; any knowledge about error

pattern can then be used to narrow down the interval.

Reference:

Shannon, C. and W, Weaver The Mathematical Theory of
Conmunication. ¥University of Illinols Press, Urbana, 1 9.




Upper Bounds 1

UPPER BOUNDS FOR THE EQUIVOCATION
A, A. Blank

AR TIOES S - s i -
’ »

Shannon defines information transmitted, T(in,out), as
T(in,out) = H(in) - H,,+(in)

where H(in) is the uncertainty of the source and Hbut(in) is
the equivocation, or the uncertalnty as to the source at the
receiving end of a channel, Set Pij = P{i,J} s the joint
probability that the i-th input category is coupled with the
j=th output category. We set

# D Py = ? Py 43 q, = Zi P1g
| ' . Pij =P1
; p(3l2) = = a(1]9) ==

H(in) = -2 py log pyg

Hyug(in) = - § 1y & alily) log attly).

The quantity Hy(in) = %% a(1]J) log q(1|]) is called
the equivocation when the j-th output occurs or the uncertainty
as to the source with respect to the j-th output. If the pur-
pose of the channel is to duplicate the input, that 1s, to

couple an input in the i-th category with an output in the
same category, it is desirable to locate and correct errors.

The quantity Hj(in) may be represented as a sum

Hj(in) = Hj(loc) + HJ(cor)

T s fndend




2 Upper Bounds

Here

Hy(loe) = - a(§1J) log a(J}3)

-[i-Q(JU;_] log El-q(“j):l.

Hj(loc) i1s called the error-locating information with respect
to the j-th output and represents the conditional uncertainty
of a source which reports on the truth or falsehood of an out-
put in the j-th category. The quantity, Hj(cor) is called the

correction information with respect to j and satisfies

1] 1]
Hj(cor) = - E-q(JIJn % -q(j[j) 1loe i'.‘-ﬁ'H'fj)

(143)

- - 1§j a(1]3) log a(1}3) + [1-a(3]3)] 20g [1-a(3]3))]

Hj(cor) is the information required to correct an output on
the condition that it falls in the j-th category.

As the error-locating information associated with the
channel we take

H(loc) = - p log p - (1-p) log (1-p)

where p = 2 Pii. As the correction information associated
1
with the channel we take

Pi=P4. Pi-p
H(cor) = - (1-p) ? —%_-:p-!'-i log -i:?!'-j-'-

[ Sy ’ s
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Upper Bounds 3

Inequality 1: Hoyug (1n) £ H(loc) + H(cor)

Proof': Houg(in)

- & ay € a(1}3) log a(i]))
i 1
= -?% a5 a(1]9) 2og q (1]4)
= -2 q, a(i|1) log a(i[1)
1

-2 {2 a3 a(1]J) log q(1]J) + q1.0 log
1 (3A

- log £

épu> 8 % (py1)

A5 = (5

IN

& -plogp - 21). (pg-p131) log (p3-Pi31).

Since the last term on the right is equal to H(loec) + H(cor)
the proof is complete. Inequality 1 may be replaced by
stronger inequalities with respect to H(loc) and H(cor). In
particular, 1t will be shown that £ qg Hy (loc) & H(loc)
and qu Hy (cor) £ H(cor).

°}




4 Upper Bounds

Inequality 2: :aqj HJ(lqc) € H(loc)

Proof:

eqj Hy(loc) = -?qJ a(3]3) log a(4|J)
- £ ay[1-a(3)3]] 208 [1-a(3]3]]
3
S -;—?.‘qj q(J[J) log ij{qj a(J]J)
-?qJE-q(JlJZ, log équJE-q(J[J_)]

<- ?PJJ log % pyy

£ -p logp ~ (1-p) log (1-p) = H(loe).




Upper Bounds 5

Inequality 3: 2(13 Hj(cor) & H(cor).

The proof of this inequality requires a preliminary result.

Lemma: -211 log_i;&l P -27&1 log h
£ 1

provided only that o~y, Ay 30, & VRS I8

Proof of Lemma:

€, log -_.2‘7‘1.-—‘1=2x log h.di*(l-gl)logl
1 1 J
sa-J A 20‘3 Ay

i
2 73
<1oD£x+£i2r log 1
- = J10
< o.
Ay A
Since 211 (log ~log —=)&0
73 1
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Proof of Inequality 3:
i ) _ __ Py
Jﬁqj Hj(cor) ?SJ Py 4 log Yy
(1£3)

= - < p,, log —Pii_
YL Y WPy

Noting that 3, Py & Lo
(JAL)

we have by the lemma above,

S Py
-& q; Hylcor) £ - s 1
T G Byl & - & AL TN R F ageyy

(pg.p11)
< - ? {(Pi-Pn) log -1 )}-

(1-p - (q4=pyy

< - % (py=py4)log(pg-pyi) + ? (Pi-Pii‘)IOSEl'P) - (qi'piiﬂ”

é-% (Pg=Pyqy) log (py=pyy) +i£ (pg=Pyq) log (1-p)

£ - ?(pi-pu) log (p,=p,,) + (1-p) log (1-p)

£ H(loc).

R




Upper Bounds 7

The value H,,4(in) is over-estimated by the value ﬁ;ut(in)

. = H(loc) + H(cor). It follows,that.

H(in) - B ,4(in) & T(injout)

In other words, we err on the conservative side if we take

¥,

out(in) as an estimate of Hout(in)? The final result may

be considered as an example of the general statement that any
source which fully corrects the errors of transmission must

have an entropy no less than Hout(in).

i e — = -

T —avay-




Remarks, Method of Hints 1

REMARKS ABOUT
THE METHOD OF HINTS
He Qnastlor

A Subject receives a message. One wishes to establish
how much of the message was assimilated, "How much" is taken
to mean "how many information units" (or "bits"). If the 8
is able to transmit the message correctly, then he certainly
has assimilated its information content. If his transmission
is only partially correct, then we may give the 8 hints con=-

taining some auxiliary information which wi’l help him to core -

rect his errors and reconstruct the entire message. It can

be shown that

assimilated ion in input informatio

Amount of inrormatiof} ;; {fmount of infor=- - Amount of
mat n
in hints

where all ahounta of information are measured in the same

‘wAits (bits).

There are many ways of giving hints. A good method will

be one which fulfills the following conditions:
(1) it permits accurate estimation of the ampunt of infor-
- mation contained in the hints, |
(i1) 1t does not confuse the §,
(111) 1t gives as little information as possible.

The issue can be made clear by reference to a famillar
situation. A student is beilng examined; one wishes to give
him credit for what he knows. Notoriously, his first answers
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2 Remarks, Method of Hints

do not reveal the full extent of his knowledge. The examiner
tries to help with hints. He must éry to keeé the actual in-
formation in thé hints small (6therwise the student could not
be given credit for the answer) and not to.confuse the gtudent.
The requirement dealing with numerical estimation does not
apply, since no quantitative estimation of the knowledge is
obtained.

The method of hints 1s analogous to an often-used method

of estimating amounts of information transmitted:

.Amount of Amount of Amount of information
. -{information| > |information| needed to locate
transmitted in input and correct errors

But, the two are not identical, It is true that the hints

‘-~aupply "information needed to locate and correct errors"; how=-

ever, in addition to this information S may use information
stored in his memory but not utilized in his first statement,
For instance, a situation like the following might' he[pp__en:
the display is s« dot on a vertical line; the line is thought.
to be divided into intervals of equal length; 8 1s asked.to
state which interval contains the dot. Suppose he makes errors

with an over-all probability g; and that, in case of error, he

18 too high by one interval with a probability of a, too low

by one interval with a probability of (l-a); no other errors

- occur, Then

(Amount of information

oded to locate orrors] = «q log, q = (1=-q) 1032 (1-q)
per act =
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Amount of informa-
tion needed to = - q [_a logy, a + (1~a) log, (l-aa
correct arrors,
per act
These two quantities must be deducted from the input informa-
tion to obtain the amount of information transmitted. Suppose,
now, that S has some recollection about the direction of his
error; then, telling him when he has committed an error will
be all he needs to producé the correct statement. Thus, the
amount of information assimilated will be greater than the
amount of information transmitted (in the first statoment) by
the amount '{;- q {E log2 ¢ + (l-a) q (I-GEI}. Some experie
snces, reported elsewhere in this collection, indicate that
the example given, while greatly simplified, is not unrealistiec.,
In general, the estimated "amount of information assimi-
lated" may be larger or smaller than the estimated “amount of
information transmitted," depending on the amount of such re-
tained information; on the efficlency of giving and utilizing
hints, and on the efficlency of the error locating and correct-
ing code. Ordinarily, we do not expect the two to differ
widely from each other,
The following paper, by A. A. Blank, gives a model of
performance for one particular Method of Hints. It is the
only model which has been worked up in some detail, and was

used on experimental data.

~ e R




A Method of Hints 1

A METHOD OF HINTS
A, A, Blank

Let us suppose we.have a stochastic source of independent
inputs a4 (1 =1, ...,r), and a response generator which has
the conditional probgbility q(i‘J) of a4 having been emltted
by the source when the response 1s aj and each response is in-
dependent of any other, The uncertainty as to the source when
the symbol ay has been reported is defined as '

H (in) = - 517 a(i]Jj) log al(i]j§).

Suppose again that when the receiver is in error the fact of
the occurrence of error is registered and fed back and the res-
ponse generator is then constrained to report differently. We

shall consider two possibilities:

l, Complete utilization of the order of probability.

Lest the conditional probabilities of error be ordered

aliz]d) > aligli) 3> oo p aliy]d)

where i,,4..,1,, 1s some ‘pernmtation of the indices excluding J.
We sﬁall suppose that, in the event of error, the response gen-
erator will report symbols in decreasing order of probability
until the correct one is reached. Let Qv(j) denote the fre-
quency with which J iélreported correctly at the v-tb report,
We have

Q,(3) = a(1,]1) (¥ = 1,000,7)

e b
-
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2 A Method of Hints

wheye we set i, = J. Clearly
Hy(in) = - £ Q,(J) log Q,(1).
The equivocation or uncertainty as to the source is given by

Kout('in) E - ? QJHJ(X)
= o ?%‘ 14Q,(J) log Q,(4)

Bo'n'eo; 'with complete knowledge of the order of probability of
the vuious. errors we may compute the equivocation by using
the method of hints (feed back an error message) and tabulat-
ing the probability for each initial response of obtaining the
ecorrect report at the v-th stage.

2. Igeomplete utilization of the order of probability.
- Let us suppose that the generator reports in the order

ot doqruaing probability until the k-th stage and that from

the (k ¢+ 1)-th stage on responses are chosen with equal proba-
. "buity from the remaining alternatives. In that case set

q‘(j)=Q(iv‘J) ) v = (loook)
r) =1 - & Q)

VWe have,

k P
Bj(in) = - £ Q1) log 4,09 - PP 20e FYL > Hy(1n)




A Method of Hints ' 3

H;(in) represents the maximum possible equivocation with res=
pect’to the source if the order of the first k conditional
probabilities of response are utilized in the prescribed man-
ner, This estimate sacrifices only knowledge with respect
to the rarer events.,

The inequality above leads to the value 2 qJH';(x)k as an
upper estimate for Hyoyut(in),

£q4Hy(1n) > Hyyy(in)

The computation of this estimate requires less than the compu-
tation of H t(in) since it requires kr categories (k = % X
2 k(3) < r), instead of rl categories,

It is not difficult to establish, with the same data,

-lower estimates for Hd(in) and hence Hout(in)° We set
1 k
Hy(in) = - 2.1 Qy(J) log Qyu(J) - P(J) log P(J)
v=
k r
where P(J) =1 - (3) = a(i,lJ)
' g v véﬂl V|

H;(in) represents the minimum equivocation with respect to

the source 1f the first k responses are ordered according to

the conditional probablilities of initial response, From the

inequality
r ' r

- & _ali,fi) log ali,|i) > - £ a(i,]]) log 2 a(i,
v=k+l vek4]l vekel

it follows that

13)
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4 A Method of Hints

A more refined estimate 1s sometimes given by

k
a;(m =- 2 () 1og Q1) - P(3) log al)

H;(in) approximates the minimum equivocation with respect to
the source if the first k responses are ordered according to
the conditional probabilitlies of iInitial response and if the
probability of correct response at any stage does not exceed
that at any preceding stage. From the inequality q(ikl J) =
Q) 3 ali,ij) for v » k, we have

r r
- 2 a(i,l)) log ali,1d) 3 - &  ali,l)) log aliyl))
v=k+l v=k+l
and hence,
Fy(1n) & Hy(in)

Ir Qk(J) < P(J) then H;(in) is a better estimate of Hj(in)
than Hs(in). Let

Hj(in) = Max H‘;(in), H;(in)) £ Hj(in).

where Hj(in) is the better approximation to H (in) of the two
lower bounds Hj(in) and Hj(in). We have

il #
S quj(in..) £ Houslin) ¢ 2 ’q'j'H‘j“‘ in).
3. Pooled data.

In some instances it may be impossible to obtain reliable

values of the frequenoy of correct response at the v-th stage.
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for each initial response. One may only know or be able to
utilize the frequency of correct response at the v-~th stage

taken over all initial reports. This would be the value

Qv o z\q:! Q-V(J)o
J

We may estimate H,..(in) by
r
ﬁout(in) = - ‘,2-1 Q, log %)-? qqHj(in) 3 Hyyg(in).

If no data are obtained beyond the k-th response we may be
sure that gout( in) is bounded above and below by

Boug(in) & Hoyglin) & Hyelin)

where

k
Bus(tn) = - £ Q log @ - P log 7y

and
Houy(in) = Max (Hoﬁt(in)’ ffo&uin)) .
Hore
X
P=1- £ Q

v=l

and
Hot';t(m) = - é Qy log Q, - P log P

Y |
Y-

£

ok
Hong(in). = - ‘ﬁl Q, log Q, ~ P log Q.

The barred symbols represent a lumping of response data into
fewer categories and the starred symbols represent the squal
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division of response data into avallable categories,
We cannot be sure of the relationship of %;ut(in) to
Hbut(in)’ but we do know that ﬁ:ut(in) is an overestimate,
To obtain a lower estimate of Hout(in) from pooled data

we may proceed as follows:

We have Hout(in) = H(in,out) - H(out)
r r

Now H(in,out) = - \ﬁl 32;1 Pyy log Pyj
where

pVJ = qj Q»v(J)o
Clearly

ilj pvJ = Qg'
Now : -

r r r
- j§1 Pyjy 108 Pyy 3> - 52=1 Pyj log 32=1 Pyy = - Q, log Q,
H‘m’.
Hyue(ln) 3 - € Q, log Q, - H(out)

or

r r ~
Hout(in) > = 21 Qy log Q, + Jil 93 log q§ = H . (in) -
e =

H(out),

If we omit the data for the categories v = k+l,.,..,r, we ob=
tain a still lower estimate

Hyyglin) 2 ‘h'out(in) - H(out) 7 %;ut(in) - H(out)

These last sstimates are very crude. 2ero .should often be a

better lower estimate of H . (in).

out
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The Uncertainty Measure 1

THE UNCERTAINTY MEASURE FOR QUANTIZED NORMAL DISTRIBUTICNS
KA. A. Blank

Whenever a discrete random variable may be thought of as
having its values imbedded in a continuum there 1s a sugges-
tion that it may be convenient to consider the distribution
of the discrete variable as the quantization of the distribu-
tion of some continuous random variable., 1In the usual game
of darts, for example, the compartment in which the.d&rt
sticks is a discrete variable, but represents in an obvious-
way the quantization of the error distribution in attempting
a strike' at the bull's eye.

In some communication problems the discrete outcomes aris-
ing may also be thought of as a quantization of a continuous
distribution (e.ge., when a dial is read to the nearest tenth
of a divisijon). In information theory, the uncertainty func-
tion is not defined in the same way for discrete and continue
ous distributions. The uncertainty for a discrete variable
is defined as

(1) H==-§_pk log py

where the value p, denotes the probability that the variable
will take its k=th value. In the continuous case, the uncer-

tainty is defined by the integral

@) ® = j 108 1(E)a P (&)
QO

where E denotes the random veriable, £ (£ ) is its probabile

gt
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2 The Uncertainty Measure

1ty density, F (&) its cumulative distribution function and
Ll 1s the sample space in which é varies, As immediate
points of difference between the two definitions 1t will be

observed that H is non-negative while H' may assume any real

-value whatever,

The most useful distribution to treat in this manner 1s
the quantized normal distribution, The normal density func=-

tion 2
1 - 28&"2
(3) £r(x) U’JZ_TT e
givgs

(4) E =3 log 2T eg?2

and since 62 may be any non-negative value )14 may assume any
value from minus to plus infinity. If a discrete distribution
may be interpreted as a quantization of a normal distribution
it is especially convenient to use () sifice all we have to
do to compute H' is to find &, H' will be a good approxima-
to ﬁ if the distribution is quantized into units sufficiently
small with respect to & . If the preclision is high and most
of the values of the discrete variable fall in one class, then
H will be very close to zero but H' will take on large nega-
tive values; in this ocase, therefore, the approximation éannot
be used.

Iet us see generally how H' is related to H. If the

azis‘or the continuous variable is broken into intervals of

Yt g b



The Uncertainty Measure 3

size A *, and A =§ s then H may be computed as a function of
A from (1) where &2

(2) k*%)x ‘-2 at (k=0, +#1, +2 )
= e — EUy 2ly, 2 chece
R (k-3 Ve

The values of H'()L) and H(A) are boﬁh plotted against A
on the accompanying graph. For A > 2, that is, A< g L
mey for all practical purposes assume H' =H, Por A < 0.1,
or A > 1007, we may assume H = 0, A nomogram for interme-
diate values of A 1s included. |

In effect, when a distribution is obtained which may be

assuned to be quantized normal, the assoclated uncertainty may

be estimated by obtalning the variance of the corresponding
continuous normal distribution and looking up H(A) on +he
graph, Alternatively, one may obtain H'(A) and look uw.
H(A) on the nomogram.

# Sheppard'!s estimate then glves & by

o%eof. d Al

where &3 1s the variance of the quantized distribution.
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' Different Methods 1
| @ DIFFERENT METHODS COMPARED

He Quastler .
A - "INFORMATION TRANSMITTED" VS. "PERCENT SUCCESs"

Among the measures which can be used assess human per-
formsnces are "information transmitted" and "percent success."
The two measures are often roughly proporticnal.

The amount of information transmitted can be thought of
as the sum of information transmitted in successful acts,
minus information needed to locate successful acts, plus in-

formation transmitted in errors (due to "near misses" and

other regularities of error patterns). Using the symbols:

P « « « POTr coent success
. H(in) . « + Information input, per act

H(loc) « « . Informatiun needed to locate errors, per
act

H(cor) « « . Information needed to correct errors, per
act

T(injout) « . Information transmitted, per act
! we have
Information transmitte

d
in successful acts ] = p . H(in)
i [Inromation transmitted
|

in errors = (1-p) . H(in) - H(cor)

and
®(insout) = H(in) E;+1-p:l - H(loc) - H(cor)

The claim made is that often

P « H(in) = T(injout),

p—

s s




2 Different Methods

Now, this is certainly not generally true, In fact, one can

have perfect transmission with nothing but errors (e.g., if

a transducer receives aAbinary message and passes it on after

b inverting each symbol); 1t is also possible that no informa-
tion at all is carried in errors, in which case p . H(in) is

5. an overestimate of T(injout). Ordinarily, neither extreme is

likely to occur. For moderate error rates, and a moderate

amount of information carried in errors, the approximation will

not be too bad. This is shown graphically in the figure,

The following two extreme examples are taken from work

done in this laboratory. In one (A. A. Blank), S had to re-
cognize letters; H(in) per letter was varied by using vari-
ous constraints. In this case, there is very little informa-

tion carried in errors; in most cases, S recognizes a letter

accurately or not at all. Hence, p . H(in) is larger than
T(injout):
H(in), Sub, A " Sub. B "
Input: Fer letter|p,H(in) T(injout)iip,H(in) T(insout)
Single equiprobable
letters ho? 2e2 1.5 2.5 109
Letters, English
frequencies hel 2.3 1.k 2.5 1.7
Pairs of initial
letters 3 2 2 03 lo.u. 1.9 009
h-lett.r words 1.8 1.6 1.0 107 1.5
# estimated by Method of Hints

The next example (J. W. Osborne and K. S. Tweedell) deals with
the task of locating a marker on a scale, In this case, near-
migsses are the rule. Thus, errors carry considerable informa-

tion, and p « H(in) is sometimes less than T(injout):

;*"‘”-, v s




Different Methods 3

no. of intervals Sub. F Sub, W
in seale | H(in) |lp.H(in) T(injout) |lp.H(in) T(injout)
16 4.0 3.3 3.2 4.0 4.0
20 he3 3.2 3.2 - -
2 L6 2.3 2.9 4.2 bl
32 5.0 2.7 3.1 3.5 3.8
36 5e2 2.9 3.3 3.6 3.7
) 48 | S.s 2.5 3.2 Il 4.5 43

B « "ERROR MAGNITUDE" VS, “HINTS"

This comparison was made during an investigation of the
amount of information assimilated from a single-pulse display.
The display contained one or two strips or dials, divided into
disorete intervals; & marker was placed at the center of any one
interval; the subject had to state in whioh interval it was
(T, Osborne and K.S. Tweedell),

In four partioular runs, the equivooation was evaluated both
by the method of hints and by error magnitudes. In the former
oase, the procedure followed was that desoribed by A. A. Blank
("A Method of Hints," this collection); in the latter case, the
procedures wag based on the discrepancy between the imput and S's
first statement, Let § be the magnitude of this error, in mesale
intervalys v; be the observed frequensy of errors of magnutude i;

and H(®) the uncertainty concerning the error magnitude; then

n(‘,-hzn 10‘:!'- 1‘0,"1'.'1."‘2. I
1V 2y £
vy =V
1 1
i




L Different Methods

If H(Z) would be evaluated separately for each output cate-

gory, then 1t would be an accurate estimate of the equivoca-

tiony if all output categories are lumped (as in this case)

it is a lower bound.

The following table shows the results:
B trials mean est. T(injout)
no, of'| per |mean -
Display tests | test |H(in) error magnitude | hints

horizontal strip| 5 80-120| 4477 3-772) 3.90

with intervals

in black & white

horizontal strip| 5  |80-120| 477 3.472) 3.52
: (intervals
§ blank)
' |2 strips, 24 1) | 8 80 | 4.58 2,513’ 2,62
& intervals,

marked black
and white
| 2 dtals, 24 1) | 8 80 | .58 E N 3.52
1 intervals
N ,
1) results given for single strip or dial.
2) terminal intervals treated separately.

i 3) no separats treatment of terminal intervals,

In all four cases, the estimation by the method of hints

gave slightly higher values for T(injout). This might mean
that 8 has assimilated some information which does not appear

in his first response, but is produced in response to hints,

¢ - "ERROR MA

4
>
G2
2
)
3

AV d JDE" vrSi "‘-TARIANCE"

This comparison was based on data obtained in a recogni-
tion experiment. The display was a dot in a square. The dot

could assume a limited number of poslitions in the square.

- NESBp—— s e . o —
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The subject was given a score sheet on which the permiasible
positions were marked; he had to state in which of these poas-
itions the dot was located., (J. W, Osborne & K, S. Tweedell).
We evaluated, separately, location vertically and hori-
sontally., The data were worked up by evaluation of error mege
nitude, as described above. In addition, we computed the
variance, or mean squared deviation between input and output,
lumping all output categories. From the variance, the equi-
vooation ocan be computed (see A. A, Blank, “"The Unocertainty
Neasure for Quantized Normal Distributions", this volume),
The following table shows the amounts of equivooation,
by the two alternate methods; each entry is based on 4O trials:

No, of possible | Method of Subject
positions: computing
equivooation [ 1 | 2 | 3 | L
1)

15 X 15 B.M, 1.8 2.2 1.6 1.9
v, 2) 2,0 | 2.4 | 1.8 | 1.8

19 = 19 B.M, 2.2 2.0 1.9 2.0

Ve 2,2 | 2.2 | 2,0 | 149

3l x 31 RN, 2.9 3.2 2.7 2.7
Ve 3.2 | 3.2 | 2,7 340

1; Brror magnitude,
2) Variance,

One sees that the “Variance" method tends to give slightly
higher values for the equivooation, This is caused by ths
presence of a few very large errors, which contribute greatly

to the variance, but not mush to the uncertainty measure.
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